310 research outputs found

    Thermal X-ray composites as an effect of projection

    Full text link
    A new possibility to explain the nature of thermal X-ray composites (TXCs), i.e. a class of supernova remnants (SNRs) with a thermal X-ray centrally-filled morphology within a radio shell, as a projection effect of the 2- or 3-dimensional shell-like SNR evolved in a nonuniform medium with scale-height <10 pc is proposed. Both X-ray and radio morphologies, as well as the basic theoretical features of this kind of SNR and the surrounding medium, are considered. Theoretical properties of a shell-like SNR evolved at the edge of a molecular cloud correspond to the observed properties of TXCs if the gradient of the ambient density does not lie in the projection plane and the magnetic field is nearly aligned with the line of sight. So, at least a part of objects from the class may be interpreted within the framework of the considered effect. The proposed model suggests that SNRs with barrel-like radio and centrally-brightened thermal X-ray morphologies should exist. The model allows us to consider TXCs as prospective sources of proton origin gamma-rays.Comment: 7 pages, 4 figures; added one figure, few subsections and references, corrected typos; accepted for publication in A&

    Analytic Solutions for the Evolution of Radiative Supernova Remnants

    Full text link
    We present the general analytic solution for the evolution of radiative supernova remnants in a uniform interstellar medium, under thin-shell approximation. This approximation is shown to be very accurate approach to this task. For a given set of parameters, our solution closely matches the results of numerical models, showing a transient in which the deceleration parameter reaches a maximum value of 0.33, followed by a slow convergence to the asymptotic value 2/7. Oort (1951) and McKee and Ostriker (1977) analytic solutions are discussed, as special cases of the general solution we have found.Comment: 5 pages, 1 figure, Astronomy and Astrophysics, accepte

    Supernova remnants as cosmic ray accelerators. SNR IC 443

    Get PDF
    We examine the hypothesis that some supernova remnants (SNRs) may be responsible for some unidentified gamma-ray sources detected by EGRET instrument aboard the Compton Gamma Ray Observatory. If this is the case, gamma-rays are produced via pion production and decay from direct inelastic collisions of accelerated by SNR shock wave ultrarelativistic protons with target protons of the interstellar medium. We develop a 3-D hydrodynamical model of SNR IC 443 as a possible cosmic gamma-ray source 2EG J0618+2234. The derived parameters of IC 443: the explosion energy E_o=2.7*10^{50} erg, the initial hydrogen number density n(0)=0.21 cm^{-3}, the mean radius R=9.6 pc and the age t=4500 yr result in too low gamma-ray flux, mainly because of the low explosion energy. Therefore, we investigate in detail the hydrodynamics of IC 443 interaction with a nearby massive molecular cloud and show that the reverse shock wave considerably increases the cosmic ray density in the interaction region. Meantime, the Rayleigh-Taylor instability of contact discontinuity between the SNR and the cloud provides an effective mixing of the containing cosmic ray plasma and the cloud material. We show that the resulting gamma-ray flux is consistent with the observational data.Comment: Printed in Condenced Matter Physic
    corecore